
Page 21 A Guide to Debouncing

Though quite similar to a counting algorithm this variant translates much more cleanly
into assembly code. One reader implemented this algorithm in a mere 11 lines of 8051
assembly language.
Want to implement a debouncer in your FPGA or ASIC? This algorithm is ideal. It�s
loopless and boasts but a single decision, one that�s easy to build into a single wide gate.

Handling Multiple Inputs
Sometimes we�re presented with a bank of switches on a single input port. Why
debounce these individually when there�s a well-known (though little used) algorithm to
handle the entire port in parallel?

Figure 3 shows one approach. DebounceSwitch(), which is called regularly by a
timer tick, reads an entire byte-wide port that contains up to 8 individual switches. On
each call it stuffs the port�s data into an entry in circular queue State. Though shown as
an array with but a single dimension, a second loiters hidden in the width of the byte.
State consists of columns (array entries) and rows (each defined by bit position in an
individual entry, and corresponding to a particular switch).

Listing 3: Code that debounces many switches at the same time
A short loop ANDs all column entries of the array. The resulting byte has a one in each
bit position where that particular switch was on for every entry in State. After the loop
completes, variable j contains 8 debounced switch values.

One could exclusive OR this with the last Debounced_State to get a one in each bit
where the corresponding switch has changed from a zero to a one, in a nice debounced
fashion.

#define MAX_CHECKS 10 // # checks before a switch is debounced uint8_t Debounced_State; // Debounced state of the switches uint8_t State[MAX_CHECKS]; // Array that maintains bounce status uint8_t Index; // Pointer into State
// Service routine called by a timer interrupt void DebounceSwitch3() { uint8_t i,j; State[Index]=RawKeyPressed(); ++Index; j=0xff; for(i=0; i<MAX_CHECKS;i++)j=j & State[i]; Debounced_State= j; if(Index>=MAX_CHECKS)Index=0; }

Page 22 A Guide to Debouncing

Don�t forget to initialize State and Index to zero.

I prefer a less computationally-intensive alternative that splits DebounceSwitch()
into two routines; one, driven by the timer tick, merely accumulates data into array
State. Another function, Whats_Da_Switches_Now() ANDs and XORs as
described, but only when the system needs to know the switches� status.

Summing up
All of these algorithms assume a timer or other periodic call that invokes the debouncer.
For quick response and relatively low computational overhead I prefer a tick rate of a
handful of milliseconds. One to five msec is ideal. Most switches seem to exhibit under
10 msec bounce rates. Coupled with my observation that a 50 msec response seems
instantaneous, it seems reasonable to pick a debounce period in the 20 to 50 msec range.

Hundreds of other debouncing algorithms exist. These are just a few of my favorite,
offering great response, simple implementation, a no reliance on magic numbers or other
sorts of high-tech incantations.

Thanks to many, many people who contributed suggestions and algorithms. I shamelessly
stole ideas from many of you, especially Scott Rosenthal, Simon Large, Jack Marshall
and Jack Bonn.

