Though quite similar to a counting algorithm this variant translates much more cleanly
into assembly code. One reader implemented this algorithm in a mere 11 lines of 8051
assembly language.

Want to implement a debouncer in your FPGA or ASIC? This algorithm is ideal. It’s
loopless and boasts but a single decision, one that’s easy to build into a single wide gate.

Handling Multiple Inputs

Sometimes we’re presented with a bank of switches on a single input port. Why
debounce these individually when there’s a well-known (though little used) algorithm to
handle the entire port in parallel?

Figure 3 shows one approach. DebounceSwitch (), which is called regularly by a
timer tick, reads an entire byte-wide port that contains up to 8 individual switches. On
each call it stuffs the port’s data into an entry in circular queue State. Though shown as
an array with but a single dimension, a second loiters hidden in the width of the byte.
State consists of columns (array entries) and rows (each defined by bit position in an
individual entry, and corresponding to a particular switch).

#define MAX CHECKS 10 // # checks before a switch is debounced
uint8 t Debounced State; // Debounced state of the switches
uint8 t State[MAX CHECKS]; // Array that maintains bounce status
uint8 t Index; // Pointer into State

// Service routine called by a timer interrupt
void DebounceSwitch3 ()
{
uint8 t 1i,3;
State[Index]=RawKeyPressed() ;
++Index;
J=0xff;
for (i=0; i<MAX CHECKS;i++)j=j & Statel[i];
Debounced State= j;
if (Index>=MAX CHECKS) Index=0;

Listing 3: Code that debounces many switches at the same time

A short loop ANDs all column entries of the array. The resulting byte has a one in each
bit position where that particular switch was on for every entry in State. After the loop
completes, variable j contains 8 debounced switch values.

One could exclusive OR this with the last Debounced State to get a one in each bit

where the corresponding switch has changed from a zero to a one, in a nice debounced
fashion.

Page 21 A Guide to Debouncing



Don’t forget to initialize State and Index to zero.

I prefer a less computationally-intensive alternative that splits DebounceSwitch ()
into two routines; one, driven by the timer tick, merely accumulates data into array
State. Another function, Whats Da Switches Now () ANDs and XORs as
described, but only when the system needs to know the switches’ status.

Summing up

All of these algorithms assume a timer or other periodic call that invokes the debouncer.
For quick response and relatively low computational overhead I prefer a tick rate of a
handful of milliseconds. One to five msec is ideal. Most switches seem to exhibit under
10 msec bounce rates. Coupled with my observation that a 50 msec response seems
instantaneous, it seems reasonable to pick a debounce period in the 20 to 50 msec range.

Hundreds of other debouncing algorithms exist. These are just a few of my favorite,
offering great response, simple implementation, a no reliance on magic numbers or other
sorts of high-tech incantations.

Thanks to many, many people who contributed suggestions and algorithms. I shamelessly

stole ideas from many of you, especially Scott Rosenthal, Simon Large, Jack Marshall
and Jack Bonn.

Page 22 A Guide to Debouncing



